

SEPARATION REPORT

高性能SEC色谱柱 TSKgel® UP-SW3000-LS

——目 录——

	页码
1. 前言	1
2. TSKgel UP-SW3000-LS的基本特性	1
2-1. 填料、色谱柱的规格	1
2-2. 色谱柱的分离性能	2
2-3. 色谱柱中蛋白质的吸附特性	3
2-4. 使用光散射检测器分析	4
2-5. 测定流速的影响	5
2-6. 色谱柱的耐用性	6
2-7. 填料的批间差异	8
3. 分离实例	8
4. 与光散射检测器联用的注意点	9
5. 总结	9

1. 前言

以抗体药物为首的生物药物主要有蛋白质、核酸、多糖等,与通常的药物相比,生物药的分子尺寸更大,因此也被称为大分子药物。由于分子大,所以具有容易变性和分解的特性,在生产工艺和存储、运输时会产生多聚体、片段等分子大小变异体。这些也被指出可能引起免疫原性。因此,分子大小变异体的含量被列为关键质量属性(CQA: Critical Quality Attributes,确保药物质量的必要特性或性质)之一,在分析时常会使用尺寸排阻色谱(SEC)。近年来,除了紫外可见吸收检测器(UV检测器)之外,还推荐使用可直接评价绝对分子量和分子尺寸的光散射检测器。

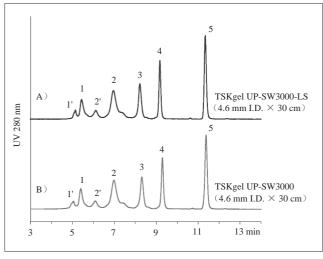
现在,我们向市场推出了蛋白质初期吸附较低,并且可应用于光散射检测器的高性能SEC色谱柱TSKgel UP-SW3000-LS。本报告主要介绍了TSKgel UP-SW3000-LS色谱柱的基本特性及其分离示例。

2. TSKgel UP-SW3000-LS的基本特性

2-1. 填料、色谱柱的规格

表1的内容是TSKgel UP-SW3000-LS的填料特性、色谱柱的产品规格以及与现有TSKgel UP-SW3000的对比。TSKgel UP-SW3000-LS色谱柱是由25 nm孔径硅胶表面导入二醇基后制成的2 μm颗粒充填。具有与现有TSKgel UP-SW3000相同的高分离性能,适用于抗体二聚体和单体的分离,同时,由于降低了蛋白质样品的初期吸附,并且色谱柱脱落(shedding)较少,所以可应用于光散射检测器。

色谱柱规格上分为4.6 mm I.D.×30 cm的高分辨率分析色谱柱,以及4.6 mm I.D.×15 cm的快速分析色谱柱。


表 1 填料、色谱柱的规格

	新色谱柱		现有色谱柱	
品名	TSKgel UP-SW3000-LS		TSKgel UP-SW3000	
色谱柱尺寸	4.6 mm I.D. × 30 cm	4.6 mm I.D. × 15 cm	4.6 mm I.D. × 30 cm	4.6 mm I.D. × 15 cm
基质	硅胶		硅胶	
官能团	二醇基		二醇基	
粒径	2 μm		2 μm	
孔径	25 nm		25 nm	
分子量排阻限 (蛋白质)	800 kDa		800 kDa	
分子量测定范围 (蛋白质)	10∼500 kDa		10∼500 kDa	
保存溶剂	20%乙醇溶液		0.1 mol/L磷酸盐缓冲液+0.1 mol/L硫酸钠+0.05% 叠氮化钠(pH 6.7)或含0.05%叠氮化钠的缓冲液	
用途	抗体 (二聚体 / 単体 / 片段) 的高分辨率分析	抗体(二聚体/単体) 的快速分析	抗体(二聚体/単体/ 片段)的高分辨率分析	抗体 (二聚体 / 单体) 的快速分析
	与光散射检测器联用分析			

2-2. 色谱柱的分离性能

图 1 是使用 TSKgel UP-SW3000-LS 和 TSKgel UP-SW3000测定标准蛋白质时的色谱比较图,图2是使用标准蛋白质时的校正曲线比较图。可以看出,TSKgel UP-SW3000-LS与现有的TSKgel UP-SW3000相比,具有相同的分离选择性以及相同的校正曲线。

另外,图1中各洗脱峰的分离度(R)如**表2**所示,色谱柱的理论塔板数如**表3**所示。可以看出,TSKgel UP-SW3000-LS与现有的TSKgel UP-SW3000相比,蛋白质的分离度相同,理论塔板数相同或更高。

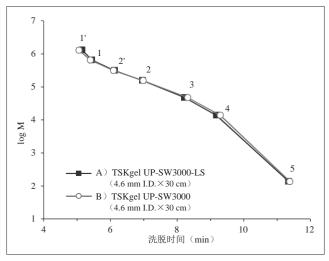


图 1 标准蛋白质的色谱图

图 2 标准蛋白质的校正曲线

〈测定条件〉

色谱柱: A) TSKgel UP-SW3000-LS

B) TSKgel UP-SW3000

色谱柱尺寸: 4.6 mm I.D. × 30 cm

洗脱液: 100 mmol/L 磷酸钠缓冲液 (pH 6.7) +100 mmol/L 硫酸钠+0.05% 叠氮化钠

流 速: 0.35 mL/min 检 测: UV 280 nm

温 度: 25℃

进样量: 10 μL

样 品: 1. 甲状腺球蛋白(MW 640,000) (1'. 甲状腺球蛋白二聚体)

2. γ-球蛋白 (MW 155,000) (2'. γ-球蛋白二聚体)

3. 卵白蛋白 (MW 47,000)

4. 核糖核酸酶A(MW 13,700)

5. p-氨基苯甲酸 (MW 137)

表 2 色谱柱性能对比 (分离度 R)

色谱柱	分离度 R			
巴噴性	洗脱峰1/2	洗脱峰2/3	洗脱峰3/4	洗脱峰4/5
A) TSKgel UP-SW3000-LS	4.05	3.70	4.43	12.60
B) TSKgel UP-SW3000	4.01	3.46	4.07	10.29

表 3 色谱柱性能对比 (理论塔板数)

色谱柱	理论塔板数	
巴增性	核糖核酸酶A(洗脱峰4)	p-氨苯甲酸(洗脱峰5)
A) TSKgel UP-SW3000-LS	51,595	58,233
B) TSKgel UP-SW3000	43,340	48,455

2-3. 色谱柱中蛋白质的吸附特性

TSKgel UP-SW3000-LS的保存溶剂与现有的TSKgel SW色谱柱不同,建议使用20%乙醇水溶液(表1)。使用20%乙醇水溶液保存的益处较多,例如可提高色谱柱保存稳定性,防止色谱柱内流动相盐结晶的蓄积(防止色谱柱脱落?增加),不使用叠氮化钠等。但是,由于使用20%乙醇水溶液保存时,可能会发生样品的初期吸附,所以对低浓度蛋白质(甲状腺球蛋白:Mw 640,000、γ-球蛋

白: Mw 155,000、卵白蛋白: Mw 47,000)样品的初期吸附进行了验证。使用20%乙醇水溶液,对4 CV(色谱柱规格)通液后的色谱柱替换洗脱液后,连续进样10次,对比第10次进样(平顶曲线)和第1次进样的峰面积值,确认到在色谱柱中的吸附率。使用了TSKgel UP-SW3000-LS、TSKgel UP-SW3000以及市售的UHPLC用SEC色谱柱,验证结果如图3所示。可以看出,TSKgel UP-SW3000-LS与TSKgel UP-SW3000以及市售的UHPLC用SEC色谱柱相比,蛋白质的初期吸附已降低。

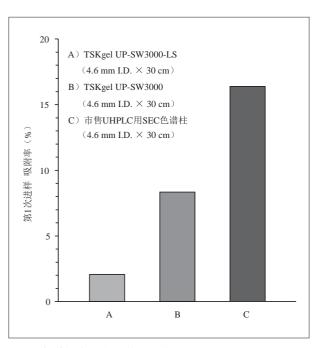


图 3 色谱柱中蛋白质的吸附率

〈测定条件〉

色谱柱: A) TSKgel UP-SW3000-LS

B) TSKgel UP-SW3000

C) 市售UHPLC用SEC色谱柱

色谱柱尺寸: 4.6 mm I.D. × 30 cm

洗脱液: 100 mmol/L 磷酸钠缓冲液 (pH 6.7)

+ 100 mmol/L 硫酸钠

+ 0.05% 叠氮化钠

流 速: 0.35 mL/min

检测: UV 280 nm

温 度: 25℃

进样量: 10 μL

样 品: 1. 甲状腺球蛋白(MW 640,000)、0.05 g/L

2. γ-球蛋白 (MW 155,000) 、0.1 g/L

3. 卵白蛋白(MW 47,000)、0.1 g/L

2-4. 使用光散射检测器分析

使用TSKgel UP-SW3000-LS和市售UHPLC用SEC色谱柱,测定牛血清白蛋白的色谱图对比如图4所示。TSKgel UP-SW3000-LS与市售UHPLC用SEC色谱柱相比,其基线干扰更少,并且由于未观察到进样峰,所以也适用于光散射检测器的测定。

另外,使用填充了不同批次填料的TSKgel UP-SW3000-LS,测定牛血清白蛋白的色谱图对比如图5所示。可以看出,每个色谱柱的基线干扰都很少,批间的差异很小。

图 4 牛血清白蛋白的色谱图(光散射分析,产品对比)

〈测定条件〉

色谱柱: A) TSKgel UP-SW3000-LS

B) 市售UHPLC用SEC色谱柱

色谱柱尺寸: 4.6 mm I.D. × 30 cm

洗脱液: 100 mmol/L 磷酸钠缓冲液 (pH 6.7) + 100 mmol/L 硫酸钠+0.05% 叠氮化钠

流 速: 0.35 mL/min 检 测: MALS 10°、90°

温 度: 25℃

进样量: 10 μL

样 品: 牛血清白蛋白 (MW 66,500)

1. 多聚体、2. 三聚体、3. 二聚体、4. 单体

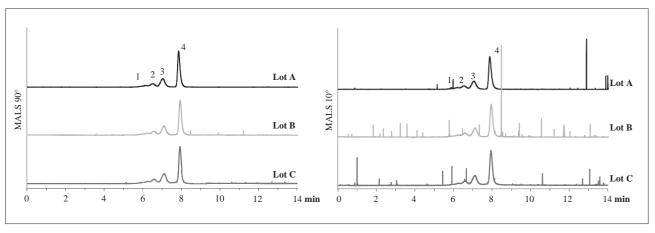


图 5 牛血清白蛋白的色谱图 (光散射分析,填料批间差异)

〈测定条件〉

色谱柱: TSKgel UP-SW3000-LS 色谱柱尺寸: 4.6 mm I.D. × 30 cm

洗脱液: 100 mmol/L 磷酸钠缓冲液(pH 6.7) +100 mmol/L 硫酸钠 +0.05% 叠氮化钠

流 速: 0.35 mL/min 检 测: MALS 10°、90°

温 度: 25 ℃ 进样量: 10 μL

样 品: 牛血清白蛋白 (MW 66,500)

1. 多聚体、2. 三聚体、3. 二聚体、4. 单体

2-5. 测定流速的影响

图6是2种不同分子量的蛋白质(牛血清白蛋白: Mw 66,500、核糖核酸酶A: Mw 13,700)以及低分子化合物(p-氨苯甲酸: Mw 137)的测定流速与理论塔板数的关系。可以看出,扩散系数较大的低分子p-氨苯甲酸的测定流速越快,理论塔板数越高。另一方面,分子量较大的蛋白质

的测定流速越慢,色谱柱效率越高,理论塔板数越高。

图7呈现的是测定流速与压降的关系。TSKgel UP-SW3000-LS(4.6 mm I.D. × 30 cm)在标准流速(0.35 mL/min)下,可在35 MPa以下的较低压强下使用。

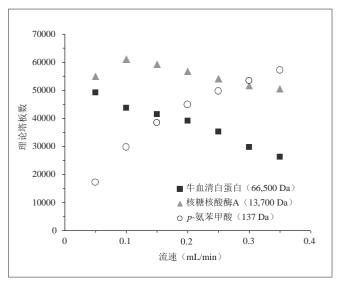


图 6 测定流速与理论塔板数的关系

〈测定条件〉

色谱柱: TSKgel UP-SW3000-LS 色谱柱尺寸: 4.6 mm I.D. × 30 cm

洗脱液: 100 mmol/L 磷酸钠缓冲溶液 (pH 6.7)

+ 100 mmol/L 硫酸钠 + 0.05% 叠氮化钠

流 速: 0.35 mL/min 检 测: UV 280 nm 温 度: 25 ℃

进样量: 10 μL

样 品: 1. 牛血清白蛋白 (MW 66,500)

2. 核糖核酸酶A(MW 13,700) 3. p-氨基苯甲酸(MW 137)

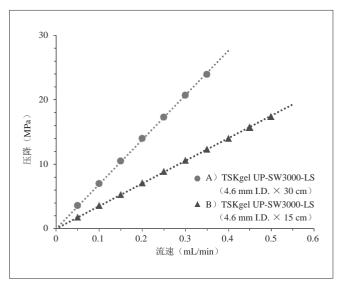


图 7 测定流速与压降的关系

〈测定条件〉

色谱柱: TSKgel UP-SW3000-LS 色谱柱尺寸: A) 4.6 mm I.D. × 30 cm

B) $4.6 \text{ mm I.D.} \times 15 \text{ cm}$

洗脱液: 100 mmol/L 磷酸钠缓冲液 (pH 6.7)

+ 100 mmol/L 硫酸钠 + 0.05% 叠氮化钠

流 速: 0.05 ~ 0.50 mL/min

温 度: 25℃

2-6. 色谱柱的耐用性

使用规格为4.6 mm I.D. \times 30 cm 和 4.6 mm I.D. \times 15 cm 的色谱柱,在最大流速(30 cm色谱柱:0.35 mL/min、15 cm色谱柱:0.50 mL/min)下,连续测定p-氨基苯甲酸时的样品测定次数与理论塔板数的关系如**图8**和**图9**所示。

而使用30 cm色谱柱连续进样γ-球蛋白时,每100次的色谱 图如**图10**所示。可以看出,500次测定后的色谱图无明显 变化,色谱柱具备良好的耐用性。

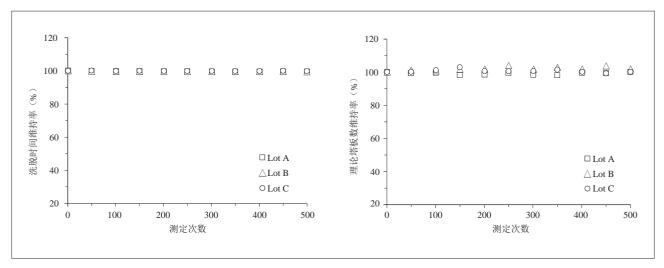


图 8 测定次数与维持率的关系(4.6 mm I.D. × 30 cm)

〈测定条件〉

色谱柱: TSKgel UP-SW3000-LS 色谱柱尺寸: 4.6 mm I.D. × 30 cm

洗脱液: 100 mmol/L 磷酸钠缓冲液 (pH 6.7) + 100 mmol/L 硫酸钠+0.05% 叠氮化钠

流 速: 0.35 mL/min 检 测: UV 280 nm 温 度: 25 ℃ 进样量: 10 μL

样 品: p-氨基苯甲酸 (MW 137)

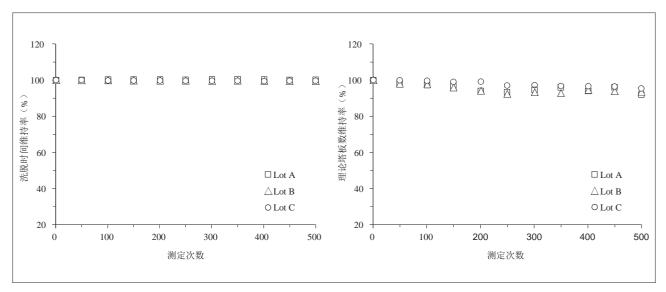


图 9 测定次数与维持率的关系(4.6 mm I.D. × 15 cm)

〈测定条件〉

色谱柱: TSKgel UP-SW3000-LS 色谱柱尺寸: 4.6 mm I.D. × 15 cm

洗脱液: 100 mmol/L 磷酸钠缓冲液 (pH 6.7) + 100 mmol/L 硫酸钠+0.05% 叠氮化钠

流 速: 0.50 mL/min 检 测: UV 280 nm 温 度: 25 ℃ 进样量: 5 μL

样 品: p-氨基苯甲酸 (MW 137)

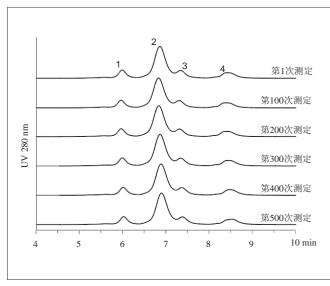


图 10 连续测定时的色谱图 (4.6 mm I.D. × 30 cm)

〈测定条件〉

色谱柱: TSKgel UP-SW3000-LS 色谱柱尺寸: 4.6 mm I.D. × 30 cm

洗脱液: 100 mmol/L 磷酸钠缓冲溶液 (pH 6.7)

+ 100 mmol/L 硫酸钠 + 0.05% 叠氮化钠

流 速: 0.35 mL/min 检 测: UV 280 nm 温 度: 25 ℃ 进样量: 10 μL

样 品: γ-球蛋白

1. 二聚体、2. 单体、3. 片段

2-7. 填料的批间差异

使用填充有不同批次填料的色谱柱测定标准蛋白质时, 其色谱图对比如**图11**所示。可以看到洗脱峰形状、洗脱位 置之间的差异较小,所以填料批间的差异较小,生产的填料稳定性很高。

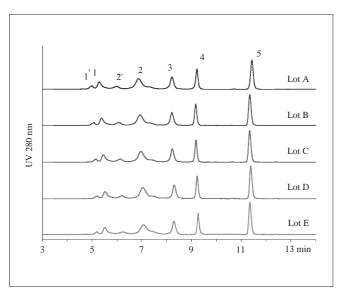


图 11 标准蛋白质的色谱图(填料批间差异)

〈测定条件〉

色谱柱: TSKgel UP-SW3000-LS 色谱柱尺寸: 4.6 mm I.D. × 30 cm

洗脱液: 100 mmol/L 磷酸钠缓冲溶液 (pH 6.7)

+ 100 mmol/L 硫酸钠 + 0.05% 叠氮化钠

流 速: 0.35 mL/min 检 测: UV 280 nm

温 度: 25 ℃ 进样量: 10 μL

样 品: 1. 甲状腺球蛋白 (MW 640,000)

(1'. 甲状腺球蛋白二聚体)

2. γ-球蛋白(MW 155,000) (2'. γ-球蛋白二聚体)

3. 卵白蛋白 (MW 47,000)

4. 核糖核酸酶A (MW 13,700)

5. p-氨基苯甲酸 (MW 137)

3. 分离实例

使用TSKgel UP-SW3000-LS,通过紫外吸收检测器(UV)、多角度光散射检测器(MALS)测定人源化单克隆抗体时的色谱图如图12所示。可以看出,由于不同检测器下的多聚体、二聚体和单体的各洗脱峰发生分离,

并且干扰等级较低,所以可应用于光散射分析。另外,分 子量更高的多聚体可在光散射检测器的高强度模式下观察, 分析也比较容易。

图 12 人源化单克隆抗体的色谱图

〈测定条件〉

色谱柱: TSKgel UP-SW3000-LS 色谱柱尺寸: 4.6 mm I.D. × 30 cm

洗脱液: 100 mmol/L 磷酸钠缓冲溶液(pH 6.7)

+ 100 mmol/L 硫酸钠 + 0.05% 叠氮化钠

流 速: 0.35 mL/min

检测: UV 280 nm, MALS 10°, 90°

温 度: 25 ℃ 进样量: 10 μL

样 品: 人源化单克隆抗体 (MW 150,000)

1. 多聚体、2. 二聚体, 3. 单体

4. 与光散射检测器联用的注意点

表4是与光散射检测器联用时的注意点。

表 4 与光散射检测器联用时的注意点

系统	 使用前的仪器清洗(在连接色谱柱之前进行) 建议在使用之前,将清洗仪器的溶液用0.2 μm以下孔径的过滤器过滤。 1) 已充分进行了内部清洗的系统 用纯水供液至少30分钟进行内部清洗。 2) 旧系统或内部清洗不充分的系统 ①纯水供液至少30分钟 ②10%甲醇水溶液至少供液一夜 ③纯水供液至少30分钟 对1)和2)进行了上述清洗后,请替换为洗脱液。然后,请连接色谱柱,平衡处理,开始测定。 2. 在线过滤器 建议在泵和进样器之间安装0.2 μm以下孔径的在线过滤器。
洗 脱 液	使用含盐的缓冲液作为洗脱液时,由于洗脱液中容易产生微生物,所以建议在使用时进行配制。另外, 建议在配制后,将溶液用0.2 μm以下孔径的过滤器过滤。
样 品 溶 液	建议在使用之前,将样品溶液用0.2 μm以下孔径的过滤器过滤。
色谱柱清洗	在连接光散射检测器之前,请将洗脱液按不超过0.17 mL/min的流速,供液色谱柱体积的至少4倍。
色谱柱保存	如果在供液停止后超过5天以上不使用色谱柱,请将色谱柱内的溶液替换为水,然后再替换为20%乙醇水溶液(出厂溶剂)保存。如果色谱柱内流动相盐结晶或细菌杂质蓄积,可能会在光散射测定时导致噪声增多等问题。

5. 总结

以上是对TSKgel UP-SW3000-LS的概述。使用本色谱柱,可以在短时间内对抗体的二聚体、单体和片段进行高分辨率分析,适用于光散射检测器的测定。

TOSOH BIOSCIENCE

东曹(上海)生物科技有限公司

地址:上海市徐汇区虹梅路1801号A区凯科国际大厦1001室 电话:+86-21-3461 0856 传真:+86-21-3461 0858

电子邮箱: info.tbs@tosoh.com.cn

网址: www.separations.asia.tosohbioscience.com